Malware and Machine Learning

نویسندگان

  • Charles LeDoux
  • Arun Lakhotia
چکیده

Malware analysts use Machine Learning to aid in the fight against the unstemmed tide of new malware encountered on a daily, even hourly, basis. The marriage of these two fields (malware and machine learning) is a match made in heaven: malware contains inherent patterns and similarities due to code and code pattern reuse bymalware authors; machine learning operates by discovering inherent patterns and similarities. In this chapter, we seek to provide an overhead, guiding view of machine learning and how it is being applied in malware analysis. We do not attempt to provide a tutorial or comprehensive introduction to either malware or machine learning, but rather the major issues and intuitions of both fields along with an elucidation of the malware analysis problems machine learning is best equipped to solve.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evading Machine Learning Malware Detection

Machine learning is a popular approach to signatureless malware detection because it can generalize to never-beforeseen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or supplementary heuristic detections by anti-malware vendors. Recent work in adversarial machine learning has shown that models are susceptible to gradient-ba...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

R2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections

Machine Learning (ML) has found it particularly useful in malware detection. However, as the malware evolves very fast, the stability of the feature extracted from malware serves as a critical issue in malware detection. The recent success of deep learning in image recognition, natural language processing, and machine translation indicates a potential solution for stabilizing the malware detect...

متن کامل

Malware Detection from a Virtual Machine Correlating Unusual Keystrokes, Network Traffic, and Suspicious Registry Access

Current anti-virus malware detection methods focus on signature-based methods. Recent research has introduced new, effective methods of malware detection. First, recent research including cloud-based monitoring and analysis, joint network-host based methods, feature ranking, machine learning and kernel data structure invariant monitoring are reviewed. Second, virtual machine based malware detec...

متن کامل

High accuracy android malware detection using ensemble learning

With over 50 billion downloads and more than 1.3 million apps in Google’s official market, Android has continued to gain popularity amongst smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature based methods become less potent in detect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015